Standard Random Number Generation for MBASIC

R. C. Tausworthe
DSN Data Systems Section

This article presents and analyzes a machine-independent algorithm for gen-
erating pseudorandom numbers suitable for the standard MBASIC system. The
algorithm used is the “polynomial congruential” or “linear recurrence modulo 2~
method devised by the author in 1965. Numbers, formed as nonoverlapping,
adjacent 28-bit words taken from the bit stream produced by the formula a,,,53, =
.7 T @n (modulo 2), will not repeat within the projected age of the solar system,
will show no ensemble correlation, will exhibit uniform distribution of adjacent
numbers up to 19 dimensions, and will not deviate from random runs-up and

runs-down behavior.

I. Introduction

The first MBASIC random number generator (Ref. 1),
implemented on the Univac 1108, used a linear congru-
ential method, x.., = 5%°x, (mod 2%), followed by nor-
malization to the range (0,1). This generator was used
probably because it was already available in the U1108
statistics package. Empirical tests by users, however,
later proved that the generator possesses very nonrandom
correlation properties indeed, especially unless great care
is taken in specifying the initial “start” value.

The canned-in default starting value, or “seed,”
(xo = 5%%) had been selected because theoretical results
(Ref. 2) claimed that the longest nonrepeating sequences

58

are obtained when x, is an odd power of 5. Unfortu-
nately, the particular x, chosen, while perhaps generating
a long sequence, does not seem to produce numbers with
very good randomness properties.

This article describes an alternate generator of a type
whose randomness has been theoretically shown to be
vastly superior and which can be implemented on any
computer, despite word length restrictions (the U1108
algorithm was tailored to 36-bit words). It is a machine-
independent algorithm.

The generation method is almost as fast as the linear

congruential method, but not quite. The ratio of speeds
is about 3:1.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

Il. The Linear Recurrence Modulo 2 Method

In 1965, the author (Ref. 3) showed that numbers
produced as successive binary words of length s taken L
bits apart (s < L) from a linear (shift-register) bit-stream
recursion of the form

Ay = Cilpy + + F Cpor@popr + Gpopy (modulo 2)

form a pseudorandom sequence whenever the polynomial
f(x) =« + ¢cpx®t + -+ + cix + 1 is primitive over
GF(2). The algebraic structure of these pseudorandom
numbers provided a way of proving that, over randomly
chosen starting values a,, - - ,a,-, in the numeric sequence,
the correlation between numbers is essentially zero,
being ostensibly equal to —27, for all numbers in the
sequence separated by less than (2?2 — s — 1)/L, subject
to the restriction (L,2? ~ 1) = 1. The author further
showed that adjacent k-tuples of such numbers were
uniformly distributed for 1 < k < (p/L).

The algorithm for computing the numbers is simple,
especially when f(x) is a primitive trinomial, say
x” + x4 + 1, where ¢ << p/2. An even greater simplifica-
tion is possible, as is shown in this article, when p is an
even multiple of L, as is the case for the trinomial
x%% -+ x¥ + 1 (from Zierler and Brillhard (Ref. 4). The
generator based on this polynomial has period 1.4 X 10¢°,
has virtually no (average) correlation between any num-
bers separated by less than 5 X 10%%8, has 28-bit precision
numbers available, and has adjacencies up to 19 dimen-
sions uniformly distributed. Runs-up and -down statistics
up to length 16 are impeccable. The period and maxi-
mum correlation distance are, in fact, so great that the
generator would have to produce numbers at a nano-
second rate for more than 10**? years before nonrandom
distribution or correlation effects would be noticeable
as nonrandom. Almost 4 X 10'* numbers would have to
be examined to detect deviations in runs-up and runs-
down statistics as nonrandom.

These pseudorandom number generators have been
widely studied (Refs. 5-8) since 1965, both theoretically
and empirically, and have been “promoted to pride of
place in the field of pseudorandom number generation
(Ref. 7).”

Tootill (Ref. 8) has even discovered generators of this
type for which “there can exist no purely empirical tests
of the sequence as it stands capable of distinguishing
between it and [truly random sequences].” For reasons

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

having to do with computer storage and precision, the
generator of this article is, unfortunately, not one of
these. Nevertheless, the generator described is vastly
superior to any linear congruential generator in existence,

Ill. The Method

The algorithm for producing the succeeding p bits
from the current set of p bits in the x? + x% + 1 generator
is,

(1) Left-shift the p bit string by ¢ bits, inserting ¢
zeros on the right, dropping ¢ bits on the left.

(2) Add modulo 2 (exclusive-or) the original and
shifted p bits.

(8) Right-shift this result by p — g bits, supplying
p — g zeros on the left, and dropping p — g bits
on the right,

(4) Add the results of 2 and (3) above modulo 2 to
give the next p bits.

The proof that this algorithm works is very simple, and
the reader is invited to apply the algorithm to the bit
string a,a,--a, and use the reduction formula
Opim =.0gum + Gy (try it with a,a.0.0.6; with a;,, =
Gam T Gn to see what is happening).

Note in the method that the number of computations
required for generating the next p bits grows at most
linearly in p. Assuming p > > L, then partitioning the p
generator bits into words of length L produces a number
of words that also increases in proportion to p. Therefore,
the number of computations for L bit precision random
numbers, to first-order effects, is independent of the
recursion degree p. Making p large, however, has advan-
tages in increasing randomness properties.

It is true that as p increases, more and more registers
are required to compute each new set of p bits, and
shifting many registers at once presents a small incon-
venience in most computer languages. These factors
place a small speed and storage overhead on the genera-
tion process; but as we shall see, even this is not extreme
due to the particular trinomial chosen.

The trinomial x°*2 + x*7 + 1 (p = 532, ¢ = 87) has sev-
eral things to recommend it: (1) 532 is factorable into
28+ 19, which means that 19 words each having 28 bits
precision can be generated all at once by the algorithm;
(2) up to and including 19-tuples of adjacently produced

59

random numbers will be uniformly distributed; (3) 28
and 19 are both relatively prime to the period (252 — 1),
so 1o ill effects occur as a result of beginning new words
every 28 bits; (4) the period and correlation distance are
so great as never to be witnessed in the lifetime of the
universe; and (5) the g = 37 value produces good runs-up
and runs-down statistics (Ref. 8), up to runs of length 16.

On converting 28-bit fixed-point mantissas to real num-
bers, 8-digit precision results. Some machines, such as
the 1108, may have to reduce this precision in order to
fit the floating-point exponent field into the word (the
U1108 has only 27-bit mantissa precision). In such cases,
the most significant bits of the generated words may
always be retained without losing randomness qualities,
so that all implementations produce essentially identical
results, within machine precision. This philosophy is
present in the algorithm which follows in Section IV.

The RANDOMIZE function which initializes the gen-
erator uses a multiplicative linear congruential algorithm
to generate the first 19-number “seed,” from which the
rest of the generated numbers grow, The particular value
for the multiplicator @ in the algorithm

Xns1 =ax, (modulo 2%)

was chosen as 41,475557,, for the L = 28 case from
theoretical results published in Ahrens and Dieter (Ref. 9),
who show that good randomness results when

a=25 (modulo 8)

a =~ 2L2¢

where £ = (52 — 1)/2 (the “golden section number”).

IV. The Algorithm

Managing the 532-bit shift-register is the main trick in
implementing the method of the previous section. The

Function:

algorithm given in this section utilizes an array Wi,
i=0,--,18 of b-bit computer words (b > 28) sufficient
to encompass the p = 532 span of bits to be operated on
(and retained), and delivered in 28-bit chunks whenever
the RANDOM function is invoked.

On machines having word sizes smaller than 28 bits,
double words will have to be used for each word in the
algorithm below., Two values of the RANDOMIZE
argument that round to the same internal fixed-point
representation will produce the same random sequence;
conversely, every unique fixed-point representation of
the argument produces a unique random sequence. In
addition, so long as the value of the argument is the
same and stays within the precisions of two differing
machines, the sequences produced on each will be the
same, within machine precision.

Counting the number of elemental operations (load,
store, shift, etc.) for the algorithm, one finds about 10 + f
operations per number generated, where f is the number
of operations in “floating” the fixed-point number. The
linear congruential algorithm requires only about 3 + f
such operations, so the ratio of speeds is approximately
3:1.

The RANDOM function is about 23 + f operations
long, as compared to 3 + f for its linear congruential
form, and data storage is 21 words vs 2. However, even
though the program requires perhaps 7 times as much
core as the linear congruential form, the total is still
probably under 50 locations, of negligible concern in
most installations. The asymptotically random sequence
of Tootill (Ref. 8) requires 607 words to store the array
W, alone. (This, coupled with the fact that only 23-bit
precision was available in that generator, is why it was
not considered here.)

The two functions, described in CRISP-PDL syntax
(Ref. 10), are as follows:

RANDOMIZE(starter:universal real)

< * This function declares and initializes a 19-element

<= array, W, ..

., W, with random numbers generated

<« by a linear congruential method. An integer I is

< = set to zero to enable RANDOM to select W, as the

< = first random number. W and I are permanent data

< * structures, accessed only by RANDOMIZE and RANDOM

60

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

1 constant multiplier:integer = 41475557
2 variable j:integer, I:integer,
W :array [0..18] of universal integer
3 if (starter<<0) < » MBASIC manual specifications = >
4 starter: =clocktime < * returns current time of day as integer » >
5 :— >(starter =0)
6 starter: =multiplier
:— >(else) < «starter >0 >
7 : starter: = fix(starter) < * floating-to-integer conversion = >
;.. endif
8 W,: =starter
9 loop for j=1to 18
10 T W, = (W;_,+»multiplier) modulo 2 = 28
11 ««repeat with next {
12 I=0 < «set up to pick W, as first random number = >
endfunction

Function: RANDOM:real
<+ This algorithm makes use of a 19-word array,
< x W,,...,Wy, each with b>28 bits. Each word contains
< » 28 bits of the generator, right justified. An
<« integer variable I on entry contains the index of
< » the word array next to be returned as the random value.
< + Both W and I are permanent data structures, accessed
< * only by RANDOM and RANDOMIZE. The latter of these
< » initializes I to zero and W to the seed.

1 variable j:integer
2 if (I=19) < =all words have been used up » >
3 . I:=0 < «reset to first element in array = >
4 loop for j=0to 16 < xexclude last two words « >
5 T load W;,,,W;,, into A,,A,
6 1 left shift A, by b—28 < xjoin bits in stream * >
N 1 left shift Ag,A; by 9 < xq=387is 28+9+ >
8 T W;:=(W; XOR A,) < =the recursion formula >
9 ««repeat with next j
10 load W, W, into A,,A; < *now compute Wy, : + >
11 left shift A, by b—28 < xjoin W5, W, bit streams + >
12 left shift Ay, A, by 9 < x A, now has final 19 bits of Ws* >
13 Wi =Wi; XOR A, < +and first 9 bits of stream shifted 495 « >
14 load W, W, into A,,A, < =do similarly for Wg* >
15 left shift A, by b—28
16 left shift A,,A; by 9
17 . Wiy =(W.s XOR A,)

: .. endif
.18 RANDOM =float(W,)/2 28 < « convert to real « >
19 I:=1+1

endfunction

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

V. Conclusion

The algorithm given has been implemented as the
RANDOM function in the MBASIC processor currently
on the Caltech PDP-10 computer. All tests so far run on
it validates the randomness properties claimed by the
theory. In that theory, by the way, the only factor left to
chance is the specification of the initial “seed.” The stated
uniformity, zero-correlation, and runs statistics are all
based on the single assumption that the seed be chosen

randomly. Of course, the default value canned in was
not randomly chosen, but chosen specifically to look
random except for the first word, and certainly, to the ex-
tent of our tests, this appears to have worked beautifully.

We have demonstrated that the generator is also capa-
ble (as is every known random number generator) of
producing numbers with 3¢ variations from random-
ness over a few thousand samples when the wrong seed
is supplied.

References

1. MBASIC, Vol. I — Fundamentals, Jet Propulsion Laboratory, Pasadena, Calif.,

p. 188.

2. Knuth, D. E., The Art of Computer Programming, Vol. 2 — Seminumerical
Algorithms, Addison-Wesley Co., Reading, Mass., 1969.

3. Tausworthe, Robert C., “Random Numbers Generated by Linear Recurrence
Modulo Two,” Math Comp, Vol. XIX, No. 90, Apr., 1965, pp. 201-208.

4. Zierler, N., and Brillhart, J., “On Primitive Trinomials (Mod 2), I1,” Inform.
Contr., Vol. 14, No. 6., June 1969, pp. 566-569.

5. Whittlesey, J. R. B., “A Comparison of the Correlational Behavior of Random
Number Generators for the IBM 360,” Comm. ACM, Vol. 11, No. 9, Sept., 1968,

pp. 641-644.

6. Neuman, F., and Martin, C. F., “The Autocorrelation Structure of Tausworthe
Pseudorandom Number Generators,” IEEE Trans. Comp., Vol. C-25, No. 5,

May 1976, pp. 460-464.

7. Tootill, J. P. R, et. al., “The Runs-Up and -Down Performance of Tausworthe
Pseudorandom Number Generators,” ACM J., Vol. 18, No. 3, July, 1971,

pp. 381-399.

8. Tootill, J. P. R, et al, “An Asymptotically Random Tausworthe Sequence,”
ACM J., Vol. 20, No. 3, July 1973, pp. 469-481.

9. Ahrens, J. H., et al,, “Pseudorandom Numbers: A New Proposal for the Choice
of Multiplicators,” Computing, No. 6, Springer-Verlag, 1970, pp. 121-138.

10. Tausworthe, R. C., Standardized Development of Computer Software, SP 43-29,
Jet Propulsion Laboratory, Pasadena, Calif., July 1976.

62

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36

